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ABSTRACT 

Maritime Platforms Division within DSTO is currently studying the emerging science and 
technology of autonomous imderwater vehicles for defence applications. As part of an 
examination of the requirements for the hydrodynamics and manoeuvrabilty of these vehicles 
MFD has been tasked with the development of models to determine the hydrodynamic 
coefficiente of simple and complex submerged bodies as a function of their shape. These 
coefficiente are specific to the vehicle and provide the description of the hydrodynamic forces 
and moments acting on the vehicle in its underwater environment. This report provides a 
detailed discussion and evaluation of three of the existing methods which have been 
documented in the literature for the calculation of these coefficients. Sample calculations 
using some of these techniques are presented, and the accuracy and applicabiHty of tiiese 
calculational methods to the underwater vehicles of interest to the DSTO are described. It is 
concluded that none of the methods surveyed has the necessary generality to encompass all 
the shapes of interest to DSTO work, and alternative computational techniques are 
recommended which should allow the hydrodynamic coefficients of more complex 
imderwater vehicles to be determined. 
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The Calculation of Hydrodynamic Coefficients 
for Underwater Vehicles 

Executive Summary 

Autonomous unmaimed underwater vehicles (UUVs) are emerging as a significant 
capability enhancer for future generation submarines. The hydrodynamic performance 
of UUVs is an area of interest having implications for control, navigation, launch and 
recovery, energy requirements and payload. A useful tool for gaining an 
understanding of the performance of a UUV is a d5mamic simulation of the equations 
of motion of the vehicle. To perform these simulations the hydrodynamic coefficients 
of the vehicle must first be provided. These coefficients are specific to the vehicle and 
provide the description of the hydrodynamic forces and moments acting on the vehicle 
in its underwater environment. This report provides a detailed discussion and 
evaluation of three of the existing methods which have been documented in the 
literature for the calculation of these coefficients. 

Before a detailed description of each method is provided a clear defirution of these 
hydrodynamic coefficients is given and the significance of each of the various 
coefficients is discussed. It is concluded that in the longitudinal plane there are only 
five linear hydrodynamic derivatives of any significance. Simplified derivations for 
each of these five coefficients are then provided which highlight the physical 
significance of each term. 

A detailed description of the calculation of each of these five coefficients using three 
different methods documented in the literature is then given. Two of tiiese metiiods 
(the U.S. Air Force DATCOM metiiod and the Roskam method) are based on 
techniques developed in the aeronautical industry, while the third is based on methods 
applicable to the calculation of the coefficients of single screw submarines and was 
developed at University College, London University, One of these methods (the 
DATCOM method) was then used to calculate tiie hydrodynamic coefficients for four 
different torpedo shapes and the calculated values were then compared with 
experimental resulte. It was concluded that the methods described above could only 
calculate accurate values of tiie hydrodynamic coefficients for specific vehicle shapes, 
and that a more promising method would be to combine experimental measurements 
on scaled models with current Computational Fluid Dynamics capabilities. 
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1. Introduction 

Autonomous urunaimed underwater vehicles (UUVs) are emerging as a significant 
capability enhancer in concepts of future generation submarines. While this is widely 
recognised, the assessment of the performance of these vehicles in operational scenarios 
needs investigation before these concepts will be considered. The hydrodynamic 
performance of UUVs is an area of interest having implicatioi^ for control, navigation, 
launch and recovery, energy requirements and payload. In fact an understanding of the 
hydrodynamic performance of a UUV is essential to its capability to perform a mission. A 
useful tool for performing these evaluations is a dynamic simulation where the 
hydrodynamic characteristics of the vehicle are characterised in the equations of motion. 

Simulation of the motion of an imderwater vehicle requires the numerical solution of six 
coupled non-linear differential equations. Three of these equations describe the 
translational motion of the vehicle, while the remaining three equations describe rotational 
motion of the vehicle about some fixed point on the body. This fixed point is usually taken 
to be either the centre of mass (CM), or the centre of buoyancy (CB) of the vehicle. Detailed 
derivations and discussions of these equations of motion can be found in many references. 
The report by Rocard [1] is perhaps the most relevant to the work described here, but 
detailed descriptions can also be found in the work of Abkowitz [2], Anderson [3], 
Brutzman [4], and Gertier and Hagen [5], Strumpf [6] provides an extension of these 
equations by considering the equations of motion of a submerged body with varying 
mass. 

Software packages for tlie solution of these equations are either readily available, or are 
relatively easy to develop. Packages currently in use by the ESTO include UUV6DOF, a 
dynamic six degree of freedom Matlab/Simulink code for Unmarmed Underwater 
Vehicles developed in conjmiction with the AustraMan Maritime Engineering CRC, and 
UUVSIM, a six degree of freedom model for navigation, guidance and control developed 
by DERAi and exchanged under The Technical Cooperation Programme agreement. 
Before these packages can be used to simulate the motion of an underwater vehicle certain 
hydrodynamic coefficients must be provided. These coefficients are specific to the vehicle 
and provide the description of the hydrodynamic forces and moments acting on the 
vehicle in its underwater environment. The evaluation of these hydrodynamic coefficients 
is a non-trivial exercise, and the purpose of this report is to describe some of the existing 
methods for the calculation of these coefficients which have been documented in the 
Hterature, and to dfecuss the applicability of these calculafion methods to the imderwater 
vehicles of interest to the DSTO. 

' DERA has since been replaced by the government laboratory DSTL and the private company QinetiQ. 
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2. Definition of Hydrodynamic Coefficients 

The terms in the equations of motion which represent the hydrodynamic forces and 
moments acting on the vehicle are often expanded in a Taylor series about some 
convenient reference condition. For aircraft and surface ships this reference condition is 
usually taken to be the equilibrium condition of forward motion at constant speed Uo. This 
approach has also been adopted for the analysis of UUVs although, for reasons which will 
be discussed later, it is less appropriate for these types of vehicles. A rectangular cartesian 
coordinate system attached to the vehicle has been used in this report. The origin of the 
coordinate system is located at the centre of gravity of the vehicle, the x axis lies along the 
longitudinal axis of the vehicle with the positive direction facing forward. The y axis 
points towards starboard, and the direction of the z axis is determined by the right hand 
rule and points downwards. The three components of the hydrodynamic force along the 
directions x, y and z are denoted by X, Y and Z respectively, and the three components of 
the hydrodynamic torque by L, M, and N. This is illustrated in Figure 1. The path of the 
vehicle is then assumed to be intentionally altered slightly by deflection of various control 
surfaces on the vehicle. The forward translational velocity of the vehicle now has a value U 
= Uo+u, and the vehicle also acquires components of translational velocity in the y and z 
directions, denoted by v and w respectively. The fundamental approximation of the 
approach adopted here is that 

|u|, |v|,|w|    «  |Uo| (2.1) 

The vehicle may also acquire angular velocities p, q, and r about the x, y, and z axes 
respectively, and a similar assumption is made about the magnitude of these angular 

velocities, ie. 

|P/REF/UO|,     |q/REF/Uo|,    |r/REF/Uo|  «1 (2.2) 

where ZREF is some reference length on the vehicle. The three components of force, X,Y, 
and Z, and the three components of the torque, L, M, and N are then expanded up to first 
order terms in the linear velocities u, v, and w, and the angular velocities p, q and r, where 
these velocities now represent perturbations to the equilibrium condition of steady state 
forward motion. Note that any dependence on linear or angular accelerations, and any 
higher order terms in the velocities, are neglected. The expressions for the forces and 
moments then take the form: 

X = X„ +X,u + X,v + X„io + X^p + X^q + Xj (2.3) 

Y = Y,+Y„u + Y,v + Y,,iv + Y^p + Y^q + Yj (2.4) 

Z = Z„ + Z„u + Z,v + Z,,io + Z^p + Z^q + Zj (2.5) 

L = L„+L,^u + L^v + L,,iv + LpP + L^q + lj (2.6) 
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M = M„ + M„» + Mj,i» + M„,iy + M^p + Mq<| + M,,r (2.7) 

N = N^+Nji + N^,v + N„,w + Npp + N^q + Nj (2.8) 

In Equations (2.3) through (2.8) the subscript notation represents partial differentiation, so 

that A'„ =^, and the zero subscript refers to conditions in the assumed reference state. 

The  partial derivatives are  known as hydrodynamic coefficients,  hydrodynamic 
derivatives, or stability derivatives, and are evaluated at the reference condition. 

, & 

\ I- 

Z, w 

Figure 1. Sdmrnatic oftlie coordinate system used. 

To first order therefore there are a possible 36 hydrodynamic coefficients which could be 
evaluated to describe the d5mamics of the vehicle. If the vehicle has certain symmetries 
however then many of these coefficients are zero. For example if the x-z plane is a plane of 

symmetry, so that the vehicle has Left/Right symmetry, then terms such as ¥„, Yw, Lu, Lw 

etc, will all be zero. ¥„ for example is the contribution to the component of force in the y 
direction due to motion in the x direction. For a body with Left/Right symmetry it is easy 
to see that this contribution will always be zero. Clarke [7] has undertaken an extensive 
analysis of all 36 Hnear hydrodynamic coefficients using detailed symmetry argumente 
and has applied them to typical imderwater vehicle shapes. He concluded that the only 

non-zero coefficients for axi-symmetric UUVs are X,^ Xv, Xw, Zw, Zq, Mw and Mq in the 

longitudinal plane, and Yv, Yr, Nv and Nr in the lateral plane. 
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Etkin [8], in discussing aerodynamic derivatives for aeroplanes, notes that for symmetric 
aircraft the derivatives of the asymmetric or lateral forces and moments, Y, L, and N, with 
respect to the symmetric or longitudinal motion variables u, w and q, will be zero. This 

implies that Yu, Yw, Yq, Lu, Lw, Lq, Nu, Nw and Nq are zero for aircraft, and bodies which 
exhibit similar symmetry properties. Etkin also makes the further approximation that all 
the derivatives of the symmetric forces (X, Z) and moments (M) with respect to the 

asymmetric variables (v, p and r) can be neglected. This implies that Xv, Xp, Xr, Zv, Zp, Zr, 

Mv, Mp and Mr are zero. The above considerations eliminate 18 of the 36 derivatives, and 

the expressions for the forces and moments now become 

X = X,+X„n + X,,iv + X^q (2.9) 

Y = Y,+Y,v + Y^p + Y,r (2.10) 

Z = Z,+Z„u + Zjv + Z^q (2.11) 

L = L, + L,v + L^p + Lj (2.12) 

M = M„+M„H + M„,zy + M,(7 (2.13) 

N = N^+N^v + NpP + Nj (2.14) 

Similar symmetry arguments are also described by Abkowitz [2] while discussing the 
stability of ocean vehicles. In Appendix I of reference [2] for example he showed that the 

terms Xv, Xp and Xr are all zero if port/starboard symmetry is assumed. Russell [9] also 
considered the effect of symmetry on the stabihty derivatives for aircraft and showed that 
the assumption that the aircraft has symmetry about a vertical plane implies that half the 
stability derivatives can be taken to be zero. 

There are still 18 first order derivatives to be considered, 9 in the longitudinal (or vertical) 

plane, Xu, Xw, Xq, Zu, Zw, Zq, Mu, Mw and Mq, and 9 in the lateral (or horizontal) plane, 

Yv, Yp,Yr, Lv, Lp, Lr, Nv, Np, and Nr. Several of these, particularly in the longitudinal 

plane, can also be neglected. Blakelock [10], for example, noted that Xq describes the effect 

of pitch rate on drag, and can be neglected. Russell [9] also stated that Xq is usually 
neglected. Brayshaw [11] adapted the methods of Roskam [12] for the calculation of 
aerodynamic derivatives of aircraft to the calculation of hydrodynamic derivatives for 

underwater vehicles, and also came to the conclusion that Xq can be neglected. Brayshaw's 

analysis also concluded that Xw, Mu and Zu can be taken to be zero for an underwater 
vehicle when the vehicle generates no lift in its steady state or reference condition. For 
both aeroplanes and underwater vehicles the reference state is usually taken to be forward 
motion at constant velocity. In this case, for an AUV, the assumption of zero lift in the 
steady state is probably justified. For a towed underwater vehicle however this 
assumption is probably incorrect. A towed UUV will probably generate negative lift to 
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counteract the vertically upward component of force provided by the towing cable. In this 

case the assumption that Xw, Mu and Zu can be set to zero may need to be modified. 

Combining the analyses of Etkin [8] and Russell [9] for aircraft with thatof Brayshaw [11] 
for underwater vehicles, the conclusion can be made that in the longitudinal plane there 

are only five linear hydrodynamic derivatives of any significance: Xu, Zw, Zq, Mw and Mq. 
This conclusion is also in agreement with Peterson's work [13]. In his HYCOF subroutine 
for the calculation of the linear and nonlinear hydrodynamic coefficients of a submersible 
the only linear coefficients calculated are those listed above. 

Strumpf [6] also considered each of the linear hydrodynamic coefficients in detail and 

provides a summary of the relative significance of each of the terms. He noted that Xv, Xp, 

Xr, Zv, Zp, ZT, MV, Mp, Mr, Yx^ Yw, Yq, Lu, Lw, Lq, Nu, Nw, and Nq Ccm be set equal to zero 

on the basis of symmetiy arguments. On the basis of experimental results he stated that Xu 

is an important coefficient, while Xw and Xq can be neglected. Similarly, based on 

experimental results, Zw and Zq are considered to be important coefficients, while Zu is 
considered to be less important. For the longitudinal component of torque M experimental 

results showed that both Mw and Mq are important, while Mu is less significant. Hence, for 

the longitudinal coefficients Strumpf considered that Xu, Zw, Zq, Mw, and Mq were 

important coefficients, while Zu and Mu were less significant. The remaining longitudinal 
coefficients were taken to be zero, either because of symmetry considerations, or on the 
basis of experimental results. These results are in good agreement with the considerations 
discussed above, where it was concluded that the only significant longitudinal coefficients 

were Xu, Zw, Zq, Mw and Mq, while Mu, Zu and Xw would only be non-zero if the vehicle 
had net lift in the steady state reference condition. For the lateral coefficients Strumpf 

concluded from experimental results that Yv, Yr, Nv, and Nr are significant terms. There is 

little experimental data available on Yp, Lp and Np, although Lp is important if banked 

turns are considered to be important. Strumpf considered Lv and Lr to be of less 
significance, and the remaining terms to be zero due to symmetry considerations. 

There are relatively few reports available in the literature which describe methods for the 
calculation of linear longitudinal and lateral hydrodynamic coefficients based on 
geometric parameters. The report by Peterson [14] is one of the most comprehensive. This 
provides a description and comparison of seven widely used semi-empirical methods for 
predicting several important linear hydrodynamic coefficients for conventional marine 
vehicles. The coefficients considered are the four longitudinal hydrodynamic derivatives 

Zw, Mw, Zq and Mq for the bare hull, and the two coefficiente Zw and Mw for the bare hull 
plus tail configuration. The seven methods are compared by applying them to three 
torpedoes and three submersibles for which experimental data are available. 

Another useful reference is a set of University College London Postgraduate submarine 
design notes [15]. This provides a very detailed example of how to calculate 
hydrodynamic derivatives for a single screw submarine. The method described assumes 
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that the derivatives for the complete submarine can be found by adding the contributions 
of each of the components (hull, propeller, appendages) and including any interference 
effects between components. The longitudinal derivatives which are calculated are again 

Zw, Mw, Zq and Mq. 

Nahon [16] describes how to determine underwater vehicle hydrodynamic derivatives 
using the USAF Datcom method. This method is the same as the first method described by 
Peterson [14]. Nahon illustrated the method by using it to calculate the three 

hydrodynamic derivatives Mw/ Yv and Nv for the ARCS (Autonomous Remotely 
Controlled Submersible) underwater vehicle. In a more recent paper [17] Nahon describes 
a simplified method for calculating the dynamics of autonomous underwater vehicles. In 
this method the hydrodynamic derivatives are avoided by calculating the hydrodynamic 
forces directly from known relations which govern the flow around simple shapes. The 
method is explained and illustrated by application to the ARCS vehicle. Basically, lift and 
drag forces are defined for the main hull, and any additional control surfaces (fins, rudder, 
etc.). The lift and drag forces are then resolved as force components in the body frame by 
transforming them through the pitch and yaw angles, as appropriate. The total force and 
moment acting on the vehicle are then determined through a summation of the component 
effects, with correction factors to account for interference effects. The performance of the 
model was then analysed through a simulation study of the ARCS vehicle's motion in a 
representative manoeuvre, and the simulation results were very close to those measured. 
Whilst this appears to be an intuitively appealing approach to the dynamics of AUVs, as it 
only requires specification of the vehicle's geometry, and the lift and drag characteristics of 
its constituent elements, the methods used to take into account the interference effects are 
relatively rudimentary. Despite this, the simulated motion agrees well with the 
experimental results. 

The reports by Wolkerstorfer [18] and Holmes [19] from the Naval Postgraduate School in 
Monterey illustrate the application of the DATCOM method described by Peterson [14] to 
the calculation of hydrodynamic derivatives for a linear manoeuvring model for the 
simulation of SLICE huUs, as well as the prediction of hydrodynamics coefficients utilising 
geometric considerations. In the latter report the hull shape considered is a body of 
revolution having a basic submarine shape. The nose is eUiptical, the mid body is 
cylindrical, and the base is conical. The arm of the work was to modify the body shape 
slightly to see how the geometric changes affected the hydrodynamic derivatives. It 

should be noted that only the coefficients Yv, Nv, Yr, and Nr are calculated in this 
application of the DATCOM method. A further point to note is that the DATCOM metiiod 
assumes that the vehicle has rotational symmetry about the longitudinal axis, and so the 

formulae used to calculate Yv, Nv, Yr, and Nr are the same as those used to calculate Zw, 

Mw, Zq and Mq. The only other reference to the calculation of lateral hydrodynamic 
coefficients which has been found is Lewis [20]. Section 9 of chapter 9 is titled "Theoretical 
Prediction of Hydrodynamic Coefficients and Systems Identification", and contains a 

good discussion of methods used to calculate Yv, Yr, Nv, and Nr. 
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3. Derivation of Simplified Expressions for 
Hydrodynamic Derivatives 

Before considering some of the more detailed methods presented in the literature for 
evaluating the hydrodynamic coefficients of particular underwater vehicles, the relatively 
simpler task of calculating coefficients for an isolated lifting surface attached as an 
appendage to a larger body is considered. This enables an understanding of the physical 
significance of each of tlie important hydrodynamic coefficients to be obtained. The 
longitudinal and lateral coefficients are considered separately, although the methods for 
each set of coefficients are essentially the same. 

3.1 Longitudinal Coefficients 

Figure 2 shows the lift and drag forces in the longitudinal plane (the x-z plane) acting 
on an isolated wing, and the resolution of these forces into components along the x and 
z axes. From Figure 2 

X = £sina-£)cosa (3,1) 

Z = -L cos a-Dmxa (3.2) 

where L represents the lift force, which is perpendicular to the direction of the wind flow, 
and D represents the drag force, which is parallel to the wind flow. 

Equations (3.1) and (3.2) are usually written in terms of the lift coefficient CL and drag 
coefficient Co, which are defined by tiie expressions CL = L / (VipV^ref), and Co = D / 
(lAp V2Sref), where p is the density of the fluid medium, Sref is a reference area, usually the 
planform area of the wing for an aeroplane, and V is the magnitude of the flow velocity, 
which is given by the expression V^ = (Uo+u)^ + v^+ w^. 

Equations (3.1) and (3.2) now take the form 

X = i/2pV2Sref (CL sui a - CD COS a) (3.3) 

Z = - i/ap V^Sref (CL COS a + CD sin a) (3.4) 

Before proceeding to derive expressiom for the longitudinal coefficiente X„, Zw, Zq, Mw 
and Mq it should be pointed out that values for the hydrod5mamic coefficients are usually 
quoted in dimensionless form. This can cause confusion because there is no universally 
accepted convention for making the coefficients non-dimensional. In particular, there are 
significant differences between the conventions adopted by the aeronautical and 
tmderwater commxuiities, and even differences between the British and American 
aeronautical conventions. In this report a non-dimensional derivative is denoted by tiie 

prime notation. Hence Zw denotes a dimensional coefficient, while Z'w denotes the 
corresponding dimensionless coefficient. There are several conventions currently in use to 
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render dimensional coefficients dimensionless. Coefficients such as Zw for example can be 

made non-dimensional by dividing by either y2p VSref, which is the convention adopted by 

Russell [9], or by pVSref, which is the convention adopted by Babister [21]. There can also 

be confusion with the rotary coefficients, such as Mq, where the practice in the 
aeronautical literature is to use a factor of two when making an angular velocity non- 
dimensional. This convention does not seem to have been adopted by the underwater 
community. To avoid confusion of this type, many of the expressions in this section have 
been left in dimensional form. 

V^ ► D 

Figure 2.    Lift and Drag forces in tlie longihidinal plane, and tlteir resolution into components X 
and Z along tlie x and z axes. 

One convention which is imiversally adopted however, at least when performing a linear 
analysis, such as that described here, is the small angle approximation. As the expansion 
scheme shown in Equations (2.3) to (2.8) represents a perturbation about a steady state 
reference state it is assumed that all angles are small, and the following approximations 
are made: 

sma ~ a 

cosa ~1 

With these approximations Equations (3.3) and (3.4) become: 

(3.5) 

(3.6) 



i:STO-TR-1329 

X = %pV2Sref(CLa-CD) (3.7) 

Z = - i/ip V2S,ef (CL + CD a) (3.8) 

From Figure 2 the following relationships can be described: 

av_u 
3U~V 

dV_w 

3w~ V 

(3.9) 

= cosa = l (3,10) 

= sin a = a = 0 (3.11) 

9a       sin a    „ 

8a _ 1     1 

9w ~ U " V 
(3.13) 

Assuming that X is a function of both V and a, then by using the chain rule it can be found 
that 

X =—=M.~M.^ ax da ^ dX 
"     dtt ~dU~ dVdU^dadU~dV ^^'^^^ 

Now, using the standard approximations 

« = 0, -—= 0, —i- = 0,aiid —i^ = 0 
dV dV BY 

(3.15) 

the following expression for Xu can be found: 

Xu=P = -pVSCo (3.16) 

This expression agrees with the result quoted by Strumpf [6], Babister [21], Smetana [22], 
and by McCormack [23]. 

For the coefficientZw consider Equation (3.8). Differentiating with respect to w and using 
the above approximations leads to 

dw    dV dw     da dw    V da 
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Zw=--pvs 
3a 

• + CT (3.18) 

Equation (3.18) is again a standard result and agrees with the expressions quoted by 
Babister [21] and Smetana [22]. 

The calculation of Zq in the aeronautical Kterature usually proceeds along the following 

lines. Pitching an aeroplane at a rate q gives a downward velocity to the tail of XVT = qxh, 
where h is the length of the tailplane arm, which is approximately equal to the distance 
between the aerodynamic centre of the tailplane and the centre of gravity of the aeroplane. 
This additional downward velocity can be treated in the same manner as the downward 

velocity considered in the derivation of Zw Hence Russell [9] derives the following 

(nondimensional) result 

K = Sc 

del 
da 

+ Cl --F^ai (3.19) 

Here Sr is the tailplane reference area, Vj- is the horizontal tail volume ratio, or tail 

volume coefficient, defined as Sflj-1 Sc, where S is the reference area for the main wing 

and c is the wing chord length, and ai is the tailplime lift/curve slope. The approximation 
made in Equation (3.19) assumes that the tailplane lift/curve slope is much larger than the 
tailplane drag coefficient. This is a common assumption. Equation (3.19) is also quoted by 
Etkin [8] and Babister [21]. Both Etkin and Russell note that on a conventional aeroplane 
the tailplane provides the most significant contribution to Zq. This is because emy 
additional component of downward velocity imparted to the main wings via the rotational 
pitching velocity will be negligibly small due to the relatively close location of these wings 
to the centre of gravity of the aeroplane. Houghton and Carpenter [24] also provide some 
additional understanding of Zq, and also Mq, by using thin wing theory to calculate Zq and 
Mq for a thin aerofoil. 

To derive Equation (3.19) it was assumed that the additional downward velocity at the 
tailplane of magnitude zt^r leads to an additional component of force in the z direction, 6ZT, 

which is given by 

hZj =Z Wj =—pFS'j- 
da 

qlj (3.20) 

J 

Differentiating with respect to q, and then normalising with respect to V2pVSref Uei, it is 
fovmd that 

^       dq 
doiZj 11 ^y^f,    ,     _      Offf 

^ '^ref^ref 
'^'•- +cl 
\ 3a 

= -F7-fli (3.21) 

J 

which is the same as the expression given in Equation (3.19). 
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Another way to derive an expression for Zq is as follows. If the aerodynamic centre is 
located a distance l,„ along the x axis from the centre of gravity, then a pitching moment 
about the centi'e of gravity will induce a local velocity component w at the aerodynamic 

centre, given by w = ql,„, hence dw/dq = /„,. (Note that !„ is positive if the aerodynamic 

centre is aft of the centre of gravity). Equation (3,8) can then be differentiated with respect 
to (| to obtain 

^ 9Z div _      dZ _ 
■^q       ~,     -. ^m~ im'^w (3.22) 

ow dq dw 

Note that the Zq given by Equation (3.22) is in dimensional form. To put Equation (3.22) 

into dimensionless form, the non-dimensional form of Z„„ ie Z',, would be used, and then 

the moment arm I„, would be divided by a reference length !„/. Because Zq would then 
represent a contribution from the tailplane, rather than the main wing, it would then be 
necessary to scale the coefficient by the ratio of the representative reference areas, Sr/Sref. 
With these adjustmente. Equation (3.22) then becomes identical with Equation (3.21). 

If a unique aerodynamic centre for the entire vehicle was defined. Equation (3.22) would 
be the correct expression for Zq for the vehicle. In practice, an aerodynamic centre is 
defined for each Hfting surface on the vehicle and a Z, is defined for each lifting surface. Zq 
for flie vehicle is then found by summing Z, for each of the lifting surfaces. For an 
aeroplane the aerodynamic centre for the main wing is often located very close to the 
centre of gravity, so the contribution to Zq from the main wing is often negligible 
compared with the contribution from the tail, which is often quite large because of the 
long moment arm. 

The expression for the pitehing moment M, assuming that the centre of gravity and the 
aerodynamic centre are separated by a distance L along the x axis and fm along the z axis, 
is simply given by: 

M = Z Im + X fm (3.23) 

Hence the expression for Mw is given by: 

Mw = Zw Im + Xw tm (3,24) 

Zw has already been calculated in Equation (3,18), and Xw is easily calculated from 
Equation (3,7): 

^    ax   ax av   ax aa   i ax 
X^=-—= -——- + —-T— =——- (3.25) 

aw dV aw da dw V aa 

ie. X^=lpVS 
/ 
c, 

V 

aco 
aa (3,26) 

Equation (3,24) is in a different form to that given by most aeronautical references. Both 
Babister [21] and Smetana [22], for example, quote the dimensional expression: 
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aM   1 aM   1 ^,^    ac„, ^^^^ Mw =T^ = —t—= -pVSTi„f-—22- (3.27) 
"^   aw   V aa   2 ^    '''^ aa 

where riref is a reference length, usually taken to be the mean chord length in the 
aeronautical literature, and Cm is the dimensionless pitching moment coefficient. This can 
be written as: 

M„=ipVS,„,|-^ = ipVS,,,|^(h-h„) (3.2S, 

where (h-hn) is the distance between the centre of gravity and the aerodynamic centre, a 
result which is derived in many of the aeronautical references, Babister [21], McCormack 
[23] and Clancy [25]. If both the centre of gravity and the aerodynamic centre lie on the x 
axis, so tm is zero, and it is recognized that Mw as given by Equation (3.24) is in body-fixed 
axes, while the Mw as given by Equation (3.28) is in the wind-axes system, then the two 
expressions for Mw are identical. 

A useful expression for Mq can be derived from Equation (3.23): 

Mq = ZqZm + Xqfm (3.29) 

Remembering that an approximation where Xq equals zero is being used 

Mq = /2^Zw (3.30) 

Equation (3.30) is a simple expression for Mq which is easily evaluated, and is identical to 
the expression used in reference [15] to calculate Mq for submarines. Expressions for Mq in 
the aeronautical literature, however, are often quoted in quite a different form. For 
example Russell [9] uses the following expression for Mq 

M;=-F,-^^ (3.31) 

where Fj  is the horizontal tail volume ratio defined by F7' =/xSr/ZrefSref. 

The derivation of Equation (3.31) is similar to the derivation of the equation for Zq. An 
aircraft pitching at a rate q imparts a downward velocity to the tailplane of magnitude IOT 

= qh, where h is the tailplane arm. It is assumed then that this downward velocity at the 
tailplane leads to an additional component of force in the z direction, 8ZT, which is given 

by 

^ZT=ZI-WJ=~^VST 
, aa       ^ 

qlj (3.32) 

This in turn contributes to a change in the pitching moment 6M given by 
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(3.33) 

which leads to 

aq      dq 2 9a D (3.34) 

If Mq is then made to be dimensionless, by dividing by l/2pVSref l-xef, and if the drag on the 
tailplane is ignored (a common assumption), then Equation (3.34) reduces to Equation 
(3.31). 

3.2 Lateral Coefficients 

As the change in flow across any vertical fins due to a change in yaw angle (J is analagous 
to a change in flow over any horizontal control surfaces due to a change in flow incidence 
a, it is possible to rewrite all the expressions in the previous section in terms of yawed 

flow and vertical fins. For example, Y^, for a vertical fin is calculated from the following 

expression 

F;=-[Cyp+C^^] (3.35) 

where Cy^ is the lateral equivalent of C^^. The derivation of the expression for Y^ given 

by Equation (3.35) follows exactly the same procedure as that used in the previous section 

to derive Z'^, only the forces are now resolved in the lateral plane (the x-y plane) rather 

than the longitudinal plane. Both Abkowitz [2] and Lewis [20] provide excellent 

descriptioiis of the methods used to calculate the four lateral coefficients Yv, Yr, Nv, and Nr 
for an isolated lifting surface attached to a main body. For a single fin the contribution to 
each of the derivatives is given as follows: 

{Y^)f=x'f{Y;)f (3.36) 

iK)f=x'f{Y:,)f (3.37) 

{K)f^ix'ff{Y;)f (3.38) 

where x'j is the dimensionless axial position of the fin with respect to the centre of gravity, 

and {Y^)f is given by Equation (3.35). It should be noted that Equations (3,36), (3.37) and 

(3.38) are the lateral equivalente of Equations (3.21), (3.24), and (3.30), which give the 

contributions of a single fin in the horizontal plane to the longitudinal coefficients Zq, Mw 

and Mq. 
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The above discussion has been in terms of the contribution of a single fin to the relevant 

hydrodynamic coefficients, Zw, Zq, Mw and Mq if the fin is located in the horizontal plane, 

or Yv, Yr, Nv, and Nr if the fin is located in the vertical plane. The contribution of the body 
itself to each of these coefficients will be discussed in the next few sections. Here however 
it is noted that, for an axisymmetric body, it is clear from a consideration of symmetry that 

the coefficients Yv, Yr, Nv, and Nr for the body alone are identical to the corresponding 

coefficients in the longitudinal plane, ie. Zw, Zq, Mw and Mq, apart from some changes in 
sign. The exact identification is as follows: 

(F;),=(Z:,), (3.39) 

(iV;),=-(^:,), (3.40) 

(r;),=-(z;), (3.4i) 

(iV;),=(M;), (3.42) 

In Equations (3.39) to (3.42) the h subscript stands for "hull", and the equations are valid 
only for axisymmetric vehicles, which are the only vehicle shapes considered in this 
report. 

4. The DATCOM Method 

Peterson [14] wrote a technical report describing seven commonly used methods for 
calculating the four most common longitudinal hydrodynamic coefficients. The methods 
were then compared by applying them to three torpedoes and three submersibles for 
which experimental data were available. The seven methods considered were: 

(i) the U.S. Air Force DATCOM method. 
(ii) a semi-empirical method due to Elizabeth Dempsey of the David Taylor Naval Ship 

Research and Development Centre. 
{Hi) a semi-empirical method derived by Strumpf at Stevens Institute of Technology, 

which was based on curve fits to torpedo data. 
(iv) a semi-empirical method by the Bureau of Ordnance which was derived by fitting to 

torpedo data. 
(v) a method due to Lanweber and Johnson at the David Taylor Model Basin, which is 

based on an improvement of earlier prediction methods for elongated bodies of 
revolution. 

(vi) a method due to Abkowitz and Paster, which is very similar to the method of 
Landweber and Johnson. 

(vii) a method devised by Nielsen Engineering and Research, Inc. which is based on an 
extensive series of wind tvmnel tests for a variety of torpedo shaped underwater vehicles. 
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Most of the methods listed above were derived from curve fits to torpedo data. As such, 
they are not expected to be particularly accurate when applied to underwater vehicles of 
quite different shapes, such as the flatfish type vehicles. The DATCOM was based on 
aircraft and missile data and is, therefore, not necessarily applicable to all classes of 
underwater vehicles. 

Peterson's application of the DATCOM method to the calculation of the hydrodynamic 
coefficients Z,',,, M,',,, Z^ and M^ for the bare hull, and Z,',, and M,',, for the bare huU plus 

horizontal tail conHguration is summarised below. The prime notation above indicates a 
dimensionless coefficient, and that Peterson adopted the convention that all derivatives 
are non-dimensionahsed with respect to the body cross-sectional area Sb and the body 
length I. 

4.1 Zw: Peterson's expression for Zw for the body alone is: 

z:„=- 
\l     ) 

L^ia.B+^i'oJ (4-1) 

where C^^^ is the body alone hft-curve slope and Cjy^ is the drag coefficient at zero lift. 

The above expression, apart from the normaHsation, K the same as Equation (3.18) derived 

in the previous section. To apply Equation (4.1) expressions for Cj and Cn are needed 

Po*" Ci^ ^ Peterson used the following expression: 

<^ia,B=2fe-*lK,/S, (4.2) 

where Sv is the effective base area, which corresponds to the area of the body at the point 
along the hull at which the flow becomes predominantly viscous. If distance is measured 

from the nose of the body then the distance Iv is computed fi-om the expression 

lv = 0.3781 + 0.527 Zms (4.3) 

where Ims is the distance from the nose to the point of maximum slope along the afterbody 

and kx and fe are Lamb's inertial coefficients [26]. Peterson did not provide an expression 
for the calculation of the drag coefficient at zerolift. Equation (4.2) only applies for smaU 

angles of attack. Finck [27] provides additional techniques to calculate C, in the non- 

linear angle of attack range, but notes tiiat the methods are approximate, and that each 
gives accurate answers only over a limited range of test conditions. Equation (4.2) is 

reasonable accurate for angles of attack up to approximately 12°, while the additional 
methods described by Finck [27] for the non-linear range extend tiie validity of the 
equations up to approximately 20°. 

The tail-alone lift-curve slope is calculated using tiie following expression: 
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2nAR Sf ^^^^ 

Where AR is the aspect ratio of the tail, Xc/i is the sweep angle at the half-chord line, and 

St is the total tail planform area. The expression for the combined body/tail Uft-curve 
slope is then 

In Equation (4.5) KT(B) and KB(T) are correction factors which account for the tail/body 
and body/ tail interference effects. KT(B) is the ratio of tail lift in the presence of the body to 
the tail lift alone, and KB(T) is the ratio of the body lift in the presence of the tail to the tail 
lift alone. These interference factors are based on potential flow slender body theory and 
are functions of the tail semi-span and the radius of the body at the aerodynamic centre. 
The theory assumes that the tail is mounted on a slender parallel body and that viscous 
effects are not appreciable. Because of these assumptions the method is reasonable for 
forward fins on submersibles, but may not be accurate for rear mounted fins. Expressions 
for the correction factors can be found in several references [15], [17]. 

The complete expression for Z'^^, then becomes 

Z'      =- ̂ Ifc,      +C^    ] (4.6) 

Peterson does not provide expressions for calculating C^^ ^, Cjy^ ^, or C^^^^ . 

4.2 Mw: Peterson states that the pitching moment/ angle of attack curve slope for the bare 
body is calculated in DATCOM by applying a viscous correction to the Munk moment, 

where Xm is defined as being the distance from the nose to the moment reference centre 
and /„ is the axial location of separation. The final expression for the pitching moment is 

then 

Kv,B = 
^S^ 

vr 
C (4.8) 

Equation (4.7) is a simple extension of an expression derived by Munk [25] for the lateral 
force per unit length for surfaces of revolution of moderate elongation moving at a small 
angle of attack relative to the long axis. This has the form: 

16 

■M 



i:6TO-TR-1329 

dF      1        . dS ,, .   . 
"J""TP^  — (*2-*i)sm2a (4.9) 
ax     2 cbc ^    ' 

These lateral forces have a resulting couple, but their resultant force is zero. To calculate 
the moment each segment has to be multiplied by a moment arm and then integrated 

along the length of the body. The factor (x,„-.t) indicates that the moment is taken about the 
centre of gravity of the body. Using the small angle approximation and then 

differentiating with respect to a, resulte in the following expression for MQ, 

M„=pV'ik, ~kJ'Ax„, -x)dx (4.10) 
0 rfx "•       ' 

To make Equation (4.7) non-dimensional (C„,^ ) it is necessary to divide by VapV^ times a 

reference area times a reference length. If Sb is chosen as the reference area and I as the 
reference length tlien Equation (4.10) reduces to Equation (4.7). Other choices for the non- 

dimensionaMsation can be made. DATCOM, for example, uses the body volume Vb instead 

of the product Sb x I in order to non-dimensionaUse M^. 

The expression for the pitching moment coefficient including the contribution from the tail 
has the form 

^"'a,BT " *^ma.B ~ ^^uj '^^(5) + ^B(r) Jy (4.11) 

where Xt is the x-coordinate of the aerodynamic centre of the tail, and the correction factors 

KT(B) and KB(T) have already been described in section 4.1. The final expression for the 
pitehing moment coefficient M[^, then becomes 

-;-H>; Cm„ «r (4.12) 

4.3 Zq: Peterson considers only the contribution of the bare hull to Zq and Mq. He quotes 
DATCOM as giving the bare body coefficient for hft force due te) change in pitch rate as 

/■ r   1 
1- 

I J V 
^h.B=^L,.B  ^—T" (4-13) 

where x,„ is the distance from the nose to the moment reference centre. Zq k then given by 
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z: q-B - ^Lg.B 
X (s.n^) (4.14) 

Comparison with Equation (3.19) shows that Equation (4.13) has a similar form, a hft 
coefficient times a moment arm. In Equation (3.19) however the moment arm is the 
distance from iiie centre of gravity to the tail, and the Kft coefficient is that for the tail. In 
Equation (4.13) the moment arm is again the distance from tiie centi-e of gravity to ihe tail, 
but die lift coefficient is that for the body, indicating that the aerodynamic centre of the 
body is at the tail. This is unlikely for underwater vehicles, and indicates that some caution 

should be taken if using Equation (4.13) to calculate Zq. 

4.4 Mq: Peterson gives the following expression for the pitching moment/ pitch rate curve 
slope: 

C       =C V 

1       ^"' 
I 

V   I l(.     x^j 

SJ[1      I Ub 

1- 
V 

S.bl 

(4.15) 

where k is the distance from the nose to the centre of buoyancy and S,^ is the cross 
sectional area of the truncated base. The expression for the pitching moment/pitch rate 
coefficient then becomes: 

K.B=- l2     "Vs 
(4.16) 

Equation (4.15) is somewhat confusing. From the derivations presented in section 3 the 
following relationship between C„, ^ and C„,^ ^ would be expected 

C„ 
"g,B 

=c "a.B 

^ X     ^ 1 "' 

/ V 

(4.17) 

Equation (4.15) does not revert to this form even when the cenfa-e of buoyancy is located 
coincident with the centre of gravity. It is interesting to note that from Equation (4.15) if 
the base is not truncated, so S,^=0, and tiie cenb-e of buoyancy is located coincident with 

the centre of gravity C,„ g = 0. Given that neither Peterson nor DATCOM presents the 

derivation of the expression given by Equation (4.15), we note that this expression should 
not be considered reliable until independent confirmation of its validity is obtained. 
Equation (4.17) also impUes that the aerodynamic centre of the body is located at the tail 
which, as noted above, will not normally be the case for underwater vehicles. 
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5. The Roskam Method 

Roskam [12] presents a very detaaed prescription for the calculation of the stability 
derivatives for aircraft Brayshaw [11] has presented a detailed analysis of this method and 
modified the techniques, where appropriate, to provide detailed expressions for the 
calculation of the hydrodynamic coefficients of underwater vehicles. In tliis section the 
main expressions derived by Brayshaw are outlined, and compared with the other 
methods described in this report 

^w: Tlie expression derived by Brayshaw [11] for C, has the following form- 

P InAR  
^a.,wmg I ^        j r — (5.1) 

This shows that the expression used by Peterson for C^     is actually an approximate 

expression which has been derived using thin wing theory, C^  = Ina. The interference of 

the fuselage with the wing, as well as the contribution of the fuselage itself to the lift, is 
taken into account using the following expression: 

^ia.„/=^"/Ci„,,.,„g (5-2) 

where KH,/ is a correction factor which has the form 

d 
^,,,^=1 + 0.025^-0.25 

b 

fd/^ 
(5.3) 

where d/is the maximum fuselage diameter and h is the wingspan. Tlie absence of a 
specific term to calculate the Uft of the fuselage by itself, as per Equation (4.2) in the 
D ATCOM method, may seem strange. The rationale behind Equation (5.2) however is that 
the contribution fc) the overaU lift of an aeroplane from the fuselage is negligible compared 
to that from tiie wings, and so the small contribution from the fuselage is accounted for 
using the correction factor given by Equation (5.3). This reasoning is not appUcable to 
underwater vehicles because of the relatively small size of the control surfaces, and the 
relatively large size of the main body. Hence the use of Equations (5,2) and (5.3) to 
calculate the lift of the main wing/body combination may be altered at a later stage. Any 
remaining horizontal control surfaces are taken into account in the final expression for 
Cj  as follows: 
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CL   =CL       +ZQ«,TI,-P-(1-^) (5.4) 

where Cr   is the lift curve slope of the control surface i, S, is the reference area of surface /, 

ri, is the ratio of dynamic pressure on surface i to the free stream dynamic pressure and 
de/da is the down wash gradient, which can be calculated from the following expression: 

^ = 4A4(K,K,K„^COSA,^X (5-5) da 

where KA = (1/AR) - 1/(1+ARl-^), K^ = (10-3?i)/7, X is the interfering wing taper ratio, 

and Kh = (1-hh/b)/ (21h/b)V3, where hh is the height of the secondary wing with respect to 

the chord plane of the interfering wing, and Ih is the horizontal distance between Vt chord 

lines. 

Methods for the calculation of the drag coefficient of an underwater vehicle are clearly 
explained by Brayshaw [11] and do not need to be repeated here. It should be noted 
however that Brayshaw, and Roskam [12], make a distinction between Cj)^, which is the 

steady state drag coefficient, and C^^, which is the drag coefficient when the lift is zero. 

Brayshaw's expression for Z',^, uses C^ , whUe Peterson's expression uses C^^, which 

Peterson defines as the drag coefficient at zero angle of attack. For an underwater vehicle 
however which has zero lift at zero angle of attack, these expressions will be the same. 
Hence Z'^can be calculated from the expression 

Z' =- 'W 
%1[Q+C.] (5.6) 

where C^ is obtained from Equation (5.4), and C^^ is obtained from the methods 

described in Brayshaw [11]. Note that the expression used by Roskam to calculate C^^ for 

the complete body. Equations (5.4) and (5.1), includes the lift of the fuselage in a rather 
non-transparent manner. A more appealing approach is to use the method derived by 
Munk [28], and used by both Nahon [17], and Peterson [14]. In this case, a different 
method would need to be used to calculate the body/wing interference factors, and this 

would probably be accomplished using the interference factors KT(B) + K B(T). 

5.2 Mw: The expression derived by Brayshaw [11] for C^^ from the work of Roskam [12] 

has the following simple form: 
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Ci„ is the lift/ slope curve for the entire vehicle, x,.^f is the (dimensionless) location of the 

reference centre (in our case the centre of mass), and x^^ is the (dimensionless) location 

of the aerodynamic centre of the complete vehicle. The determination of this position is a 
rather complicated procedure, and detailed methods are described by Brayshaw [11], Once 

CM„ is determined then M'„can be calculated from the expression M',, =(Sb/|2) Cj^ 

5.3 Zq: Brayshaw [11] quotes the following expression for CT 

C,-2 
( * 

1=1 
(5.8) 

where 

and 

/      9 
C      —C        '""    '"" 

'ref    ^ref 

^^,..^^L„,.^>-r^ (5.10) 
K-ef   S,ef 

where >]i is the shpstream interference factor. The factor of 2 in Equation (5.8) is due to the 
manner in which angular velocities are non-dimensionahsed in aeronautical literature as 
previously mentioned in section 3, 

5.4 Mq: The expression given by Brayshaw for C^ is: 
q 

CM, = Z <^i„ {^r# - Xac, )+ Ci^,^_^^^ {l^^f - X^„// ) (5.12) 

where x^^f is the location of the vessel's centre of gravity, x^^, is the location of the 

aerodynamic centre of control surface i, and x^^,„ is the location of the aerodynamic centre 
of the hull. Equation (5.12) is a sum of terms, each of which is tiie product of a lift 
coefficient times a moment arm, and is basically an extension of the expression derived in 
Equation (3.35). The determination of Xf,^,, is a non-trivial exercise for a flatfish type UUV 
and neither Roskam nor Brayshaw provided any prescriptions to determine its value. 
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6. The University College London Method 

The method described in chapter 7 of reference [15] is applicable to the calculation of the 
derivatives of single screw submarines. It is not claimed to be very accurate and is only 
applicable for small angles of incidence, and for manoeuvres in which the curvature of the 
path of the submarine is small. The method is intended to be used primarily for 
preliminary design calculations, and for estimating the effect of small changes to a design. 

6.1 Zw: In the calculation of Z',,it is assumed that the contribution from the hull can be 

neglected. It is noted that this is only true in potential flow, and that a body of revolution 
in a real flow at a finite angle of attack does generate Uft. However, for submarines with 
stabilising tail surfaces the tail is normally a very efficient lifting surface compared to the 
hull, and so the approximation is made that 

^u' = ^w.TAIL + ^w.BOWFINS (^•^) 

For a pair of fins moxmted on a symmetrical body reference [15] gives the following 
expressions; 

for an isolated wing: Z',, = ~ ~ C^^ (6.2) 

5^ 
2 

Cr (6.3) for a fin/body combination:   Z,'^, = -[•^s(pf) + ^r(B) J-^  " 

where KB(W) is the ratio of lift on the body in the presence of the wing to lift on the isolated 

body, where the wing and the body have the same incidence, and Kw(B) is the ratio of the 
lift on ihe wing in the presence of the body to the lift on the isolated wing. Reference [15] 
gives plots of KB(W) and Kw(B) as a function of r/ s, where r is the radius of the body, and s 
is the distance from the centre of the body to the tip of the wing. As stated, the above 

definition implies that KB(W) contains the contribution to Z[^, from the hft of the body. This 

is not the case however, and KB(W) + Kw(B) have to be interpreted as correction factors. For 
example, in the DATCOM method as explained by Peterson, the combined body/tail lift- 
curve slope is given by Equation (4.5), ie. 

Here Cr     is the contribution to the lift of the vehicle from the body alone, C,     is the 

contribution to the lift from the tail alone, the factor KT(B) corrects for the interference to 

flow around the tail from the presence of the body, and the factor K B(T) adds a correction 
to the Uft of the body due to interference to the flow around the body from the effect of the 
tail. 
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Reference [15] appears to be working in the wind frame of reference and hence there is no 
contribution to Z',,from drag. Reference [15], like Peterson [14], does not present any 
methods for the calculation of drag on the vehicle, 

6.2 Mw : M',, is the contribution to the pitching moment due to a change in the z 

component of velocity. This effectively changes the Hft, and hence the pitehing moment 
about the centre of gravity. As noted in reference [15], the forces acting on a neutraUy 
buoyant eUipsoid moving through an ideal, inviscid fluid have been calculated in several 
classical hydrodynamics textbooks. If the ellipsoid has an angle of attack to the flow there 
is no Hft force, but a destabilising moment acts on the body. Lamb [26] derived the value of 
the moment in terms of kx and kz, the added mass coefflcients of the body in the x and z 
directions, and m', the non-dimensional mass. It has the form 

M\,=-{k^-k^)m (6.4) 

To calculate the contributions from the bowplanes and stemplanes reference [15] uses the 
simple prescription 

M\,=-Z\! 
X 

I I v6-5) 

where x is the distance between the centre of gravity and the ¥4 chord position of the fin, 
and I is the lengtii of the vehicle. Equation (6.5) is the product of the force (lift) times the 
moment arm. 

6.3 Zq: Since it has already been assumed that the contribution to Z,'„ from the hull is zero, 

the contribution to Z^^ from the huU wiU also be zero. Hence the only contributions wiU 

come from the bowplanes and stemplanes. The contribution ft-om each of these is simply 

r 
Z^ = -Z,^, X \ I {6.6) 

which is equivalent to the expression derived in section 3, Equation (3.22). The rationale 
behind Equation (6.6) is that if the centre of gravity is travelHng in a curved path then the 
incidence in the vertical plane is - {x/tfxx]. Equation (6.6) is then used to calculate 2' for 

both bowplanes and stemplanes and the two contributions are then added to give the net 
Z^. In the method described in thfe section, as well as in the metiiod due to Roskam, the 

contribution to Zj from the huU is set to zero, whHe in Peterson's approach the only 

contribution to Z^ comes from the huU. 

6.4 Mq : The calculation of M'^ is simHar to the calculation of Z^. As the contribution 

to Z'^ from the huU is zero the contribution to M' from the huU wiU also be zero. Hence 
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the only contributions come from the bowplanes and stemplanes, and the contribution 
from each of these is given by 

M',=Z[A^^ (6.7) 

Equation (6.7) is identical to Equation (3.30). Since Z,',is negative. Equation (6.7) implies 

that each of the contributions to M'^ will also be negative. 

7. Comments on Accuracy, and Sample Calculations 

Peterson [14] has applied the seven different methods mentioned in section 3 to three 
torpedoes and three submersibles for the bare body derivatives Z',,, A/',,, Z^ and M^, and 

for die body/tail derivatives for Z,',,and M',,. Each of flie prediction methods was 

computerised and the results then compared with experimental data for the six bare body 
and body/ tail configurations. Of particular interest to this report is the degree of accuracy 
shown by the various methods. Each of tiiem poorly predicted the bare body rotary 
coefficient data, Z^ and M'^. The average error over all seven methods for Z^ and 

M' was 60%, and the best result (Landweber and Johnson) still had an error of 27%. M',, 

and Z'^ were better predicted. The average error for M,'^ was 7.4%, and the average error 

for Z'^was 25%. Peterson attributes the good agreement for M'^ to the fact that the 

modified Munk moment is a good approximation to the actual C„,   of slender bodies of 

revolution. Peterson concluded that the metiiods developed by NCSC in conjunction with 
NEAR, Inc. for computing bare hull static normal force and pitching moment coefficients 
gave the best overall results, predicting within 22% of the data on all six configurations. 
The NEAR method is the one programmed into Peterson's HYSUB code for the 
hydrodynamic analysis of submersibles [13]. 

Reference [15] provides a worked example for the calculation of Z[^, M'^, Z^ and M'^ for 

a 61.0 m submarine. This example also includes contiibutions to the hydrodynamic 
coefficients from the effects of vortices over the huU and stemplanes, as well contiibutions 
from the propeller. The magnitude of the various contiibutions are shown in Table 1. The 
relative magnitudes and signs of the separate contiibutions to each of the coefficients is 
quite interesting. For M'^, for example, tiie largest contiibution comes from the hull and 

has a positive sign, indicating that it is a destabilising moment. The second largest 
contiibution comes from the stemplanes. Longitudinal stability of an aeroplane requires 
tiiat M'^ be negative. On an aeroplane the main wing is often slightiy forward of the 

centie of gravity and hence makes a positive contiibution to M',, (as do the bowplanes in 
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the above example). Longitudinal stability is provided by the tail, where the product of the 
Uft on the tail, times the long moment arm, provides a negative contribution which 
overcomes the positive contributioit from the main wing. For underwater vehicles, such as 

a submarine, the situation is quite different. The main contribution to M^„ comes from the 

huU, The sternplanes provide a negative contribution, but M',, still has a relatively large 
positive value. 

Reference [15] also considers the contribution from the propeller, and the effect of the 
interaction of the vortices with the sternplanes and huU, to the final values for the 
hydrodynamic coefBcients. It can be seen that the hull, bowplanes and sternplanes provide 
the largest contributions to M,',, accounting for 73% of the total value of M,',,. 

Table 1. Hydrodynamic Coefficients for 61 metre submarine [15], 

Component z;,(xio3) M; (XW) z;(xio3) M;(X103) 

Hull 

Propeller 

Bowplane 

Stemplane 

0 

-1.32 

-11.34 

-23.04 

+13.88 

-0.70 

+3.74 

-10.60 

0 

-0.70 

+3.74 

-10.60 

0 

-0.37 

-1.23 

-4.88 

Total exc. vortices -35.70 +6.32 -7.56 -6.48 

Vortices on Sternplanes 

VortEX on Hull 

+6.60 

-2.62 

+3.04 

-0.84 

-2.18 

+0.86 

-1.00 

+0.28 

Total inc. vortices -31.72 +8.52 -8.88 -7.20 

As a further test of the accuracy of some of these algorithms the DATCOM method was 

used to calculate Zw, Mw, Zq, and Mq for four different torpedo shapes. The algorithms 
were coded using the MATLAB package and the torpedo data was taken from the 
Hydroballistics Design Handbook [29]. The torpedo shapes were specified in the 
Handbook by listing the diameter values at Ae corresponding axial positions. All of the 
experimental results quoted here are for torpedos with bare hulls. In this case the body is 

axisymmetric and the longitudinal coefficients Zw, Mw, Zq, and Mq are equal to the lateral 

coefficients Yv, Nv, Yr, and Nr, hence only experimental values for the longitudinal 
coefficients need be calculated. 

One of the problems with making a comparison between calculated and experimental 
values for the hydrodynamic coefficients found in the HydrobalHstic Design Handbook is 
that the method used to non-dimensionalise the coefficients has not been expUcitly stated. 

It appears, for example, that the experimental value of Zw has been non-dimensionaHsed 
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by dividing the dimensional result by the factor pVSref, rather then the factor V2pVSref. 
Using this convention, the results shown in Tables 2 through 5 were obtained. The 
calculated values are shown in the columns labelled HYGUESS, which is the name of the 
computer program which calculated these results. 

For the Mark 13 and Mark 18 torpedos the calculated values are in quite good agreement 
with the measured values, with both Z',, and M',, agreeing to within a few percent with 

the experimental results. Only Z^ for the Mark 18 torpedo shows a significantly larger 

error of 38%. For the Mark 36 and Mark 41 torpedos the agreement is not quite as good, 
but still within acceptable limits for these types of algorithms, as noted by Peterson [14]. 
The results for Z',, and M'^^, agree with the experimental values to within 26%, while the 

results for Z" and M' have mismatches of between 16% and 37%. 

Table 2:     Comparison of calculated and experimental values for the four longitudinal 
hydrodynamiccoefficients Z,'„ M,',„ Z^, «nd M'^ for tlieMark 13 Torpedo. 

MARK 13 MOD TORPEDO 

Coefficient HYGUESS Experiment Percentage difference 

K -0.593 -0.60 1.2 

K 0.9932 0.99 0.0 

z; -0.209 -0.20 5.0 

K -0.0740 -0.08 7.5 

Table 3:     Comparison of calculated and experimental values for the four longitudinal 
hydrodynamic coefficients Z,'„ M,'„ Zg,and M'^ for tlie Mark 18 Torpedo. 

MARK 18 MOD TORPEDO 

Coefficient HYGUESS Experiment Percentage difference 

z: -0.779 -0.76 2.6 

M; 1.056 1.094 3.4 

^; 
-0.284 -0.206 37.9 

M; -0.1037 -0.117 11.4 
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Table 4:     Comparison of calculated and experimental values for tlie four longitudinal 

hydrodynamic coefficients Z,',„ M,',,, Z'g,and M'^ for tlieMark36 Torpedo. 

MARK 36 MOD TORPEDO 

Coefficient 

Z' 

M' 

Z' 

HYGUESS 

-0.918 

0.960 

-0.324 

-0.114 

Experiment 

-0.94 

1.156 

-0.384 

-0.181 

Percentage difference 

2.1 

17.0 

15.6 

37.0 

TahUS:     Comparison of calculated and experimental values for tlie four longitudinal 

hydrodynamic coefficients Z,',,, M,',,, Z'^j,and M'^ for tlie Mark il Torpedo. 

MARK 41 MOD TORPEDO 

Coefficient HYGUESS Experiment Percentage difference 

K -0.584 -0.68 14.7 

M; 0.73022 0.991 26.0 

^; -0.210 -0.16 31.0 

M; -0.0757 -0.11 31.0 
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8. Discussion and Conclusion 

A great deal of the literature which describes methods for the calculation of hydrodynamic 
derivatives is based on methods which are applicable to standard aeroplane designs. 
Adapting these prescriptions for use with underwater vehicles has led to problems in 
calculating some of the derivatives because of significant differences between the basic 
shapes of aeroplanes and underwater vehicles. In particular, an aeroplane typically has a 
single large wing area which generates virtually all the lift on the vehicle. Underwater 
vehicles, on the other hand, typically have very small control surfaces fore and aft which 
generate minimal lift. For an AUV the lift generated by the hull may well be comparable to 
that generated from the fins. This is in contrast to an aeroplane, where the lift from the 
fuselage may either be neglected entirely, or treated in a very superficial manner. 

Another significant difference between aeroplanes and underwater vehicles occurs in the 
basic shape of the main body. For aeroplanes the fuselage is usually cylindrical or closely 
resembles a cyclinder, and the methods for the calculation of the derivatives in many cases 
are based on this implicit assumption. While some underwater vehicles, for example the 
ARCS vehicle [30], have cylindrical hulls, many, such as Marius [31] and Wayamba [32], 
are based on a flatfish design, and methods based on cylindrical hulls are inappropriate 
for these vehicles. 

Given the problems referred to above, the simplified approach pioneered by Nahon [17] is 
attractive because it avoids the calculation of the hydrodynamic derivatives and calculates 
the hydrodynamic forces directly by summing components of the Lift and drag forces on 
the main hull and all control surfaces and appendages. As previously noted however, a 
drawback with the method as described by Nahon is the very rudimentary manner in 
which interference effects are taken into account. Nevertheless, the method has an 
appealing simplicity, and it may be possible to pursue this approach further by 
incorporating some of the more detailed methods described above which provide more 
accurate expressions for calculating the correction factors. 

An alternative approach to the calculation of hydrodynamic coefficients for non 
axisymmetric bodies is to combine experimental techniques with current Computational 
Fluid Dynamics (CFD) capabilities. In the last two decades both the sophistication of CFD 
codes, and the computing power of standard desk top workstations, have increased 
significantiy. The possibility of using CFD to determine hydrodynamic derivatives is now 
just becoming feasible [33]. In MPD we intend to use both axisymmetric and non- 
axisymmetric scale models in the experimental facilities at the Australian Maritime 
Engineering College in Launceston to measure hydrodynamic coefficients for a variety of 
underwater vehicle shapes. These results will then be used to benchmark simulation 
results for these scale models from the Fluent CFD code. Provided the level of agreement 
between the simulation results and the experimental results is reasonable, we will then use 
Fluent to perform a parametric study on a variety of UUV shapes to determine the 
manoeuvrability characteristics of each of these vehicles. 
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